On exponential sums with Hecke series at central points

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Exponential Sums with Hecke Series at Central Points

(T ε ≤ K ≤ T ) are considered, where αj = |ρj(1)| (coshπκj) , and ρj(1) is the first Fourier coefficient of the Maass wave form corresponding to the eigenvalue λj = κ 2 j + 1 4 to which the Hecke series Hj(s) is attached. The problem is transformed to the estimation of a classical exponential sum involving the binary additive divisor problem. The analogous exponential sums with Hj( 1 2 ) or H j...

متن کامل

On the Moments of Hecke Series at Central Points Ii

We prove, in standard notation from spectral theory, the asymptotic formula (B > 0) ∑ κj≤T αjHj( 1 2 ) = ( T π ) 2 − BT log T +O(T (log T )), by using an approximate functional equation for Hj( 1 2 ) and the Bruggeman-Kuznetsov trace formula. We indicate how the error termmay be improved to O(T (log T )ε).

متن کامل

On the Moments of Hecke Series at Central Points

We prove, in standard notation from spectral theory, the following asymptotic formulas:

متن کامل

On Sums of Hecke Series in Short Intervals

The purpose of this paper is to obtain a bound for sums of Hecke series in short intervals which, as a by-product, gives a new bound for Hj( 1 2 ). We begin by stating briefly the necessary notation and some results involving the spectral theory of the non-Euclidean Laplacian. For a competent and extensive account of spectral theory the reader is referred to Y. Motohashi’s monograph [13]. Let {...

متن کامل

Exponential Sums over Points of Elliptic Curves

We derive a new bound for some bilinear sums over points of an elliptic curve over a finite field. We use this bound to improve a series of previous results on various exponential sums and some arithmetic problems involving points on elliptic curves. Subject Classification (2010) Primary 11L07, 11T23 Secondary 11G20

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Functiones et Approximatio Commentarii Mathematici

سال: 2007

ISSN: 0208-6573

DOI: 10.7169/facm/1229619651